网上那些让人抓狂的数学题中级篇

作者: Admin 分类: 教学辅导 发布时间: 2015-12-10 04:09 ė 6 没有评论

  前面我们在《网上那些让人抓狂的数学题初级篇》介绍了一些初级的『数学题』,前面也说了,这些题并不能算数学题,只是出题人有意偷换概念,让人信以为真,当然,弄出这样题目的大都并不是出于恶意,只是拿来逗大家开心一下。今天我们再来介绍一些这类型的题目,不过,今天介绍的这些题更具有欺骗性,而且以几何题为主(同样,其实这些题也不能叫几何题),大家可能更难看出这些题其中的奥妙。

  一、消失的正方形
  这是数学游戏大师马丁·加德纳在《从惊讶到思考》一书中提到过的例子。重新摆放分割的小块图形后,上面的正方形中少了一个小方格,它去了哪里?我们不妨实际操作一下,做两个全等的、上面没有孔洞的正方形(做的越大越好)。把其中一个按图中的式样精确地剪成所需要的五块,然后重新安排一下,拼成右边的样子的。最后把它放到未经剪切的正方形上边,让二者的上边和两侧边都重合。你会发现,其实带方格的图形不是真正的正方形。它实际上是长方形,比正方形高 1/12。它的底部多出一个 12 ×(1/12) 的窄带,其面积恰好等同于消失方格的面积。

  二、所有三角形都是等腰三角形

  这是一个颇为古老的数学把戏。最近又开始在网上流传。不妨来看看这个神奇的结论是如何得到的。
  在一个任意△ABC中,做 A 点的角平分线,交BC边的垂直平分线 A’O 于点 O。然后过 O 点分别做 AB 与 AC 边上的垂线,垂足为 C’ 和 B’。
  显然 △AC’O≌△AB’O,所以 AC’ = AB’, C’O = B’O
  又因为 BO = CO, ∠OB’C = ∠OC’B
  所以 △BOC’≌△COB’。 推得: C’B = B’C
  AB = AC’+ C’B = AB’ + B’C = AC,即 △ABC 是等腰三角形。
  正如前面所说,平面几何的谬误大多都是在有误差的图上做文章的。实际上,角平分线会与其相对的垂直平分线并不相交于三角形内,而是交于三角形外部。所以即使有 AC’=AB’,BC’=B’C,我们也能一眼看出 AB=AC’+AB’,AC=BC’-B’C。
  三、图里藏人

  下面让我们见识一下什么是『大变活人』。
  先看两排爷们的脸
  把上面的图从中间剪开,然后挪动成下图那样,怎么就少了一个人?
  再看下面这张图。
  上图仅仅通过两个动作,剪切和互换,就让人数在十二和十三之间变来变去,这是怎么回事?
  眼尖的读者或许已经发现了,这种精心的安排其实是移花接木。以『爷们脸』这幅图为例(这幅图较简单),第一个人变成了圆下巴,第二个直接变成了双下巴,第三个的鼻子变大了,第四个的鼻子变长了,第五个换了一个表情,多了眉毛。
  因为整个图的面积不变,但是脸个数少了一个,导致剩下的那些脸都变大了一些,其结果就是所有爷们个个是长脸。这种传递式的面积分配,很容易通过上色标记的办法清晰地辨认出来。
  至于第二个图,不得不说那是一个精妙无比的设计。不妨在图片变动之前,对十二个人编号。
  再看看移动之后的号码变动情况,其中上身和下身都对应着各自的编号。
  如果仔细看,便会发现移动之后 1 号小小地少了一撮头发,10 号的鞋底也被削了一层。他们各自都被从身体的某个部位切割下一点东西,活生生拼凑出了一个人。当画面上出现 13 个人时,每个人都比出现 12 个时要矮 1/13。
  两幅图的原理都是通过累积很多次细微尺寸的变化,最终改变图中物品的数量。第一幅较为简单,而第二幅用十二人切合成十三个,做了十二件事(从每个人身上“偷”一点),但却只用了两个动作!其精巧程度实在让人佩服。
  有趣的是,有一种古老的伪造钱币的方法正是以这种原理为基础的。按照上面的方法可以类似地把九张钞票分成 18 份,重新安排成十张。但这样伪造的钞票很容易被侦破,不建议读者采用。因为票面上特殊的两个数字串,钱号在这种操作下已不相匹配。在所有的钞票上,这两个数字串都是位于相对的两端,一高一低。这正是为了挫败这种伪造企图。
  四、看似一样的信息,不一样的结果

  一位母亲有两个孩子,有人问母亲的朋友 A,两个孩子都是女孩吗?这位朋友说:『我不清楚,但有一个是女孩』。母亲的另一位朋友 B 说:『我上次去她家,看到一个女孩』。朋友 A 听到,表示不屑:『这和我说的不是一样的吗』。
  看起来这两个信息没有差别,但它们真的是等同的吗?
  答案是:不同的。由 A 给出的信息可以推出两个孩子全是女孩的概率是 1/3,而由 B 则是 1/2。
  让我们仔细分析一番。根据 A 的叙述,我们知道『两个小孩中有女孩』,而两个小孩的性别组合有四种情况:男男,男女,女男和女女。因为知道了两个小孩中有女孩,所以可以排除『男男』,两个小孩都是女孩的概率便是 1/3。(微歌注:这种说法有问题)
  而 B 的陈述是看到一个孩子是女孩,问题实际上就转化成了『另一个孩子是不是女孩』,因此两个小孩都是女孩的概率是 1/2。
  为什么呢?这是因为在进行概率计算的时候, 不确定的描述往往意味着更多的可能性 。一个类似的例子是,打牌的的时候,如果有人说『来打个赌吧,我现在有一张 A,猜猜我还有没有更多 A?』这种情况下他很可能会输,但如果他报出抓到的那张 A 的花色『我现在有一张黑桃 A,猜猜我还有没有更多的 A?』那结果就截然不同了。死理性派之前对此有过一个 详细的分析 。前一种情况下,有更多 A 的概率是 37% ,而后一种有更多 A 的概率一下就跃升为 56% 。面对这样反常的结果,不了解概率论的人,都会被吓一跳。
  类似这样『想不通』的例子还有很多。比如著名的三门问题。换还是不换?这是一个让无数人纠结的问题,据说很多人在看了详尽的分析后,依然觉得有违常理,不能接受。『最高 IQ 人类』的玛丽莲在当年公布自己的答案 — 换一扇门时,立刻引来巨大争议,无数人觉得她回答错了,并写信『纠正』她,这些记录都保留在它的个人网站上。就是直到今天,这个游戏依然困扰着不少人。

  五、双赢的赌局

  甲和乙各自收到女朋友送的领带。两人见面开始争论谁的更贵,最终决定打个赌,去商场调查,谁的领带贵谁就算赢, 而赢的人要把领带送给输的人作安慰 。
  甲认为他在这个赌局中输赢是等概率的。如果赢了,那么失去的是自己戴的这条领带。而如果输了,则会得到一个更贵的领带。所以这个赌局对他是有利的。
  当然乙也可以这样想。但问题是,打一次赌怎么会同时对双方都有利呢?
  这个著名的问题由法国数学家莫里斯?克莱特契克在他的《数学消遣》书中首先提出。他指出,要想这个游戏公平,必须限制条件。比如甲乙二人对对方女朋友的阔绰程度一无所知等。如果说甲的女朋友出手相对更阔绰些,那么甲的领带就有较大的可能比乙的要贵,他就更倾向于输掉这次打赌。
  这个例子后来衍化成著名的钱包悖论,道具由领带变为了钱包:由第三者计算甲、乙二君钱包里面的钱,钱少者可以赢走钱多者的钱。
  实际上,甲、乙二人的错误在于,他们只根据『可以赢更多的钱』这点,就做出这场赌博对自己有利的结论。但这场赌博对谁有利,应该以谁可以『赢得这场赌博』而不是『可以赢更多的钱』来判断。以赌谁钱包里钱少为例。判断谁有胜算,必须注意两点:
  1、必须计算期望值。
  2、钱包里有多少钱是很随机的。
  所以正确的逻辑应为:
  1、如果我的钱包里有较多的钱,那么我参加这个游戏,会输掉较多的钱。
  2、如果我的钱包里有较少的钱,那么我参加这个游戏,会赢得较多的钱。
  这两种情况的可能性是均等的。而且,由于总有一个人赢得另一个人输掉有更多钱的钱包,这个游戏是均衡的。所以它的结果应该是甲、乙各有一半的可能获胜。也就是说,这个游戏 是公平的 ,并不对哪一方有利。

本文出自微歌,转载时请注明出处及相应链接。

本文永久链接: http://wego2.com/wang-shang-na-xie-rang-ren-zhua-kuang-de-shu-xue-ti-zhong-ji-pian.html

0

发表评论

电子邮件地址不会被公开。 必填项已用*标注

Ɣ回顶部